

РОССИЙСКИЙ ФЕДЕРАЛЬНЫЙ ЯДЕРНЫЙ ЦЕНТР ВНИИЭФ

Создание государственных инструментов поддержки инноваций – залог успешной модернизации промышленности России

Жигалов В.И.

20.04.2011

Президентская программа модернизации и технологического развития экономики

«...Во Всероссийском НИИ экспериментальной физики к 2011 году планируется создать компьютер, который способен проводить квадриллион операций в секунду. На это государство выделяет определённые немаленькие деньги – более чем 2,5 миллиарда рублей...»

Д. Медведев 22.07.2009 г. Саров

Президентская программа по проекту «Развитие суперкомпьютеров и грид-технологий»

Объем финансирования Программы в 2010 году составил 1,1 млрд. руб. Продолжение Программы в 2011-2012г. – 1,47 млрд. руб.

Авиастроение

«Компания Сухой», «НПО «Сатурн»

Атомная энергетика

«ОКБМ Африкантов», ОКБ «Гидропресс» «СПбАЭП»

Автомобилестроение «КАМАЗ»

Ракетно-космическая

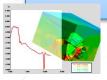
ФКП «НИЦ РКП», «КБХА», «ЦСКБ -Прогресс»

Использование суперкомпьютерных технологий существенно сокращает количество испытываемых образцов и значительно удешевляет разработку.

В 2010 году были изготовлены 21 экземпляр универсальной компактной суперЭВМ. Из них 15 экземпляров были поставлены в 11 предприятий и организаций – соисполнителей проекта

Программа государственно-частного партнерства

Создание научно- производственного кластера «Росатом- Система»


Объем финансирования Программы 30 млрд.руб., в том числе:

Федеральный бюджет 15 млрд. руб.

Частные компании 15 млрд. руб.

Объем финансирования в 2010 году составил 1 млрд. руб.

Стратегические информационные технологии

Центр компетенции и обучения суперкомпьютерным технологиям, включая строительство электрической подстанции

Создание ПАК для имитационного моделирования телекомуникационных сетей и систем на основе акусто-эмиссионных датчиков

Создание наземно-космического центра информационно-управляющих систем различного назначения

Создание индустрии производства суппер ЭВМ для организаций РФ, и создание ЦОД

Создание сложных технических систем

Создание экологически безопасных генераторов синтез-газа, создание энергоустановок, основанных на преобразовании природного газа и других углеводородов

Центр лазерных систем и технологий (создание современных комплексных физических систем на основе оптического когерентного излучения)

Создание элементов современных энергетических систем на базе кинетических накопителей электромагнитного действия

Создание производства современных микрооптических элементов

Основные цели программы создания НПК «Росатом-Система»

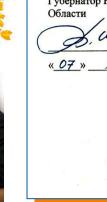
В соответствии с Программой реформирования Ядерного Оружейного Комплекса (ЯОК) ~ 3 000 человек будут работать в сфере новых инновационных разработок

Укрепление национальной безопасности посредством поднятия научно-технического потенциала предприятий ЯОК

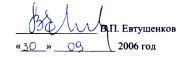
Реализация высокотехнологичных инновационных проектов национального уровня

Увеличение доли выпускаемой высокотехнологичной гражданской продукции **ЯОК**

Привлечение в проект частного капитала как дополнение к государственному финансированию


Создание привлекательного климата для молодых специалистов, обеспечение притока кадров в инновационную сферу

Совместное решение о реализации Инновационной программы развития «РФЯЦ-ВНИИЭФ» и создании Технопарка



СОВМЕСТНОЕ РЕШЕНИЕ.

- 1. Рассмотреть Инновационную программу развития ФГУП «РФЯЦ-ВНИИЭФ» как пилотную программу в рамках концепции развития инноваций в Росатоме и Нижегородской области.
- 2. Оказать содействие в получении федерального финансирования для развития инфраструктуры Технопарка и ряда проектов государственного значения.

Директор и первый заместитель научного руководителя ФГУП «РФЯЦ-ВНИИЭФ»

Р.И. Илькаев 2006 год Председатель Совета директоров АФК «Система»

Распоряжение Правительства Нижегородской области от 14.08.2006 №600-р о признании

строительства и развития. Открытого технопарка приоритетным проектом Нижегородской области

Научно-технологическая и кадровая база Технопарка

Российский федеральный ядерный центр – научно-исследовательский институт экспериментальной физики (РФЯЦ –ВНИИЭФ) – партнер развития Технопарка

Исследовательский комплекс

Институт теоретической и математической физики

Институт экспериментальной газодинамики и физики взрыва

Институт ядерной радиационной физики

Институт лазерно-физических исследований

Научно-технический центр физики высоких плотностей энергии и направленных потоков излучений

≈ 5 000 чел.

Ученые основатели

Курчатов И.В.

Харитон Ю.Б.

Сахаров А.Д.

Конструкторское бюро

≈ 5 000 чел.

Производственная, технологическая и испытательная база

Завод ВНИИЭФ

Технологический центр

«Авангард» электро-механический завол

≈ 5 000 чел.

R&D центр (на стадии строительства)

≈ 5 000 чел.

Сегодня в РФЯЦ-ВНИИЭФ работает ~ 20 000 высококвалифицированных специалистов

Текущий статус технопарка

Председатель Правительства РФ, Председатель партии Единая Россия В.В.Путин на конференции партии «Единая Россия» по стратегии развития Приволжского федерального округа, состоявшейся 14 сентября 2010 г. отметил, что «...Технопарк в Сарове- хороший пример развития технопарков»

Привлечение резидентов

На сегодняшний день на площадях Технопарка успешно работают 24 компании, среди которых Intel, ООО «Саровский инженерный центр», с общей численность сотрудников более 300 человек

Привлечены мировые лидеры Intel, Nokia-Siemens Networks и Microsoft.

Развитие инфраструктуры

- Общая площадь 50 Га
- Введено в эксплуатацию около 11000 м2 научно-производственных площадей

Проведены работы по благоустройству территории

Введены в эксплуатацию объекты социальной инфраструктуры: гостиница, кафе-ресторан

Идет строительство малого R&D центра, начата реконструкция котельной под современный центр энергообеспечения и еще ряда важных объектов

Государственные инструменты поддержки инноваций

ГОСУДАРСТВЕННЫЕ ФОНДЫ

ФОНД СОДЕЙСТВИЯ РАЗВИТИЮ МАЛЫХ ФОРМ ПРЕДПРИЯТИЙ В НАУЧНО-ТЕХНИЧЕСКОЙ СФЕРЕ, РВК, РФФИ и т.д.

ЗАКОНОДАТЕЛЬНАЯ БАЗА

ФЕДЕРАЛЬНЫЕ ЦЕЛЕВЫЕ ПРОГРАММЫ

МИНОБР РФ, МЭР РФ

Поддержка инновационной деятельности в Нижегородской области

Закон Нижегородской области от 14.02.2006 № 4-3 «О государственной поддержке инновационной деятельности в Нижегородской области»»

(принят постановлением 3С НО от 26.01.2006 N 1815-III)

Предусматривает для поддержки инновационных проектов :

предоставление налоговых льгот,

отсрочку и рассрочку платежей в областной бюджет,

компенсацию части банковской ставки по коммерческим кредитам.

Льготы предоставляются на нормативный срок окупаемости проекта, но не более чем на три года.

Предполагается использование внебюджетных источников финансирования – банков, инвестиционных венчурных фондов и т.д.

Определяет первоочередные проекты Совет по научно-технической и инновационной политике, созданный при областном правительстве.

Закон Нижегородской области от 04.03.2011 N 34-3 «О государственной поддержке технопарков в Нижегородской области»

(принят постановлением 3С НО от 24.02.2011 N 2432-IV)

Определены основные цели и принципы оказания государственной поддержки технопаркам в Нижегородской области, а также полномочия органов государственной власти Нижегородской области по решению вопросов их государственной поддержки.

Установлено, что государственная поддержка предоставляется управляющим компаниям технопарков, включенных в реестр технопарков в Нижегородской области, и резидентам технопарков, включенным в реестр резидентов технопарков в Нижегородской области.

Перечислены виды мер государственной поддержки.

Определены условия и порядок включения технопарков и резидентов технопарков в соответствующие реестры.

Формы государственной поддержки научной и инновационной деятельности

- прямое финансирование;
- предоставление индивидуальным изобретателям и малым внедренческим предприятиям беспроцентных банковских ссуд;
- создание венчурных инновационных фондов, пользующихся значительными налоговыми льготами;
- снижение государственных патентных пошлин для индивидуальных изобретателей;
- отсрочка уплаты патентных пошлин по ресурсосберегающим изобретениям;
- реализация права на ускоренную амортизацию оборудования;
- создание сети технопарков и т.п.

Предложения

- Продолжить финансирование существующих федеральных программ, как основного инструмента поддержки инноваций
- Сформировать новую законодательную базу поддержки инноваций, в том числе принять Федеральный Закон о технопарках в сфере высоких технологий, о предоставлении на федеральном уровне резидентам технопарков налоговых льгот и преференций, аналогичных льготам и преференциям, предоставляемым резидентам технико-внедренческих особых экономических зон, Инновационного центра Сколково, т.к. субъекты инновационной деятельности должны функционировать в одинаковых экономических условиях
- Эффективно использовать венчурные фонды в привязке к конкретным технопаркам
- Осуществлять программы по подготовке кадров для инновационной экономики, в т.ч. возможности предоставления грантов Министерства образования и науки РФ на стажирование в компаниях технопарков, финансирование проведения на базе технопарков конференций и форумов

Центр компетенций, обучения и сертификации по суперкомпьютерному имитационному моделировани

СУТЬ ПРОЕКТА

Создание Центра компетенции и обучения суперкомпьютерным технологиям для продвижения на рынок суперкомпьютерных технологий для решения наукоемких задач промышленности, науки, образования и обеспечения конкурентоспособности на мировом рынке высокотехнологичной гражданской продукции

РЫНОК

Атомная энергетика (ОАО «ОКБМ», СПбАЭП,ИБРАЭ и т.д.), Авиастроение (ОАО «ОКБ Сухого», НПО «Сатурн», Космическая отрасль (НИЦ РКП, КБХА)

Продукты

 Γ РИД-система доступа к вычислительным ресурсам РФЯЦ-ВНИИЭФ и МГУ на основе высокоскоростных сетей (2010г. – 1 Γ бит/с, 2011 – 10 Γ бит/с);

Учебные классы на 20 мест;

Программно-аппаратные комплексы на основе компактных суперЭВМ, оснащенных прикладным программным обеспечением для имитационного моделирования разработки РФЯЦ-ВНИИЭФ;

Рабочие места для 10 сотрудников;

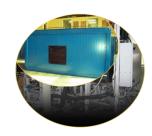
Единая локальная вычислительная сеть Центра (ЛВС с выходом в глобальную сеть); Визуализационная система для комплексного анализа результатов имитационного моделирования;

СуперЭВМ производительностью 60 Тфлопс

Комплекс инженерных систем

Учебные курсы и методические материалы для обучения работе с прикладным ПО Нормативная база

ВАЖНОСТЬ


Обеспечение конкурентоспособности экономики и ее устойчивого роста по средствам суперкомпьютерных технологий, которые определяют качество, сроки и экономичность процессов создания наукоемкой высокотехнологичной конкурентоспособной продукции, военной и специальной техники

Создание компактных генераторов синтез-газа для повышения экономической и экологической эффективности транспорта и энергетики и энергоустановок, основанных на прямом преобразовании природного газа и других углеводородов в электрическую энергию

СУТЬ ПРОЕКТА

- организация сборочного производства энергоустановок на топливных элементах (ЭУ на ТЭ) мощностью 3-5 кВт;
- организация сборочного производства генераторов синтез-газа (ГСГ) производительностью 5-25 м.куб/час, 25-50 м.куб/час.
- организация мелкосерийного производства катализаторов для преобразования углеводородов

РЫНОК

нефтегазовая отрасль, жилищно-коммунальное хозяйство

Продукты

- Энергоустановка на топливных элементах (ЭУ на ТЭ) комплекс взаимосвязанного оборудования для производства электрической энергии на основе прямого преобразовании газа и других углеводородов в электрическую энергию.
- Генератор синтез-газа (ГСГ) устройство, позволяющее вырабатывать из углеводородного сырья (метана) водородосодержащую смесь, которая используется в качестве добавок к основному топливу.
- Катализаторы элементы в составе энергоустановок и генераторов синтез-газа. Основная функция преобразование исходного природного газа в водородосодержащую смесь.

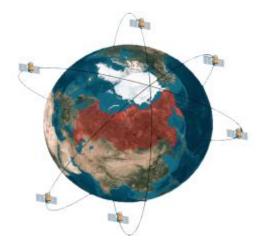
важность

ЭУ на ТЭ возможно применять в различных отраслях народного хозяйства, как в качестве основного источника питания, так и в качестве резервного. Кроме того ЭУ на ТЭ возможно применять в местах, не охваченных централизованными тепло-энерго сетями.

Автомобильный генератор синтез – газа предназначен для широкого класса новых эффективных транспортных средств с практически нулевой эмиссией, ориентированных на эксплуатацию в экологически загрязненных больших городах.

Внедрение генераторов синтез-газа будет начато на северных территориях, где возникают проблемы с доставкой жидкого углеводородного топлива, но есть хотя бы небольшие местные источники какого-либо углеводородного газообразного топлива - природного газа, попутного нефтяного газа, газового конденсата, биогаза

Создание наземно-космического центра информационно-управляющих систем различного назначения



СУТЬ ПРОЕКТА

Создание наземно-космического центра информационноуправляющих систем различного назначения на базе Технопарка при кооперации ВНИИЭФ, РТИ Системы, ВКА им. Можайского

РЫНОК

Минобороны, МЧС, Федеральное агентство «Роскосмос», Газпром

Продукты

- Обеспечение радиационной стойкости РЭА КА
- Испытания перспективных автоматизированных систем управления и связи в интересах МО РФ, в интересах других ведомств;
- □ Отработка технологий создания и проведения испытаний высокоскоростных каналов связи и передачи данных;
- Обеспечение стендовой отработки технических решений по модернизации существующих и разрабатываемых перспективных РЛС РКО;
- □ Непрерывный мониторинг в интересах обеспечения безопасности объектов МЧС, Газпрома, Минтранса

важность

Наземно-космический центр информационно-управляющих систем направлен на обеспечение эффективного решения большого спектра важнейших национальных задач военного и гражданского назначения в области глобальной мобильной телекоммуникации и многофункционального мониторинга

Национальный центр лазерных систем и технологий

СУТЬ ПРОЕКТА

Создания отечественного коммерческого производства широкого спектра лазеров, в том числе, компонентов мощных лазеров с диодной накачкой, а также элементов оптических и лазерных систем

РЫНОК

Медицина, промышленность (обработка материалов)

Непрерывные и квазинепрерывные лазеры с диодной накачкой 1000 B_T).

Импульсные лазеры с диодной накачкой.

Технологические лазерные комплексы для резки и сварки металлов и для микрообработки.

Медицинские лазерные комплексы.

Сложные лазерные комплексы для научных исследований.

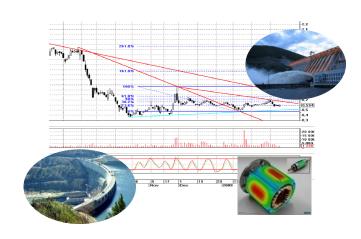
Сопутствующая продукция на создаваемых производствах.

Сервисные и другие услуги.

ВАЖНОСТЬ

Реализация проекта позволит обеспечить создание новейших лазерных систем и технологий и организовать современное промышленное производство по выпуску высокотехнологичной продукции.

Создание центра гидродинамических исследований



СУТЬ ПРОЕКТА Разработка и внедрение комплексной технологии обследования и управления водно-энергетическими режимами на базе новых телекоммуникационных решений

РЫНОК

ОАО «Русгидро», ОАО «Газпром», ФГУП «Севмані»

Продукты

- •Программно-аппаратный комплекс гидродинамических расчетов, в том числе системное и прикладное ПО, специальные библиотеки
- Услуги по проведению расчетов и математическому моделированию гидродинамических процессов
- Оборудование для высокоэффективной технологии аккумулирования и поставки энергии на базе кинетического накопителя

ВАЖНОСТЬ

Создание центра гидродинамических исследований, разработки и изготовления морской техники это комплексный проект, включающий ряд направлений, целью которых является повышение эффективности энергетических систем основанных на природных ресурсах (вода и углеводороды):

Новые технологии переработки и транспортировки угля в рамках угольного технологического кластера

СУТЬ ПРОЕКТА

Разработка технологии глубокой переработки угля и получения из него электроэнергии, а также перемещения рыхлых горных пород на большие расстояния по подземным выработкам и на поверхности

РЫНОК

Угольная отрасль (ЗАО «Шахта Беловская»)

- Канатно-ленточный конвейер для транспортирования на большие расстояния рыхлых насыпных грузов
- Комплексная технология переработки угля и получения полукокса и электроэнергии

ВАЖНОСТЬ

Уникальный опыт сотрудничества ФГУП «РФЯЦ-ВНИИЭФ» и ЗАО «Шахта Беловская» позволит создать опытно -промышленный полигон на базе ЗАО «Шахта Беловская» для решения актуальных проблем угольной промышленности:

- Апробация новых технологий и выход на новые для угольной промышленности рынки;
- Новые разработки в области повышения безопасности работы шахтеров;
- Применение новых технологий для повышения производительности шахты.

