

Analysis of GHG emission reduction potential of Russian Federation

November 2021

### Current greenhouse gas emissions in Russian Federation



Sources: KPMG analysis, Russian National Greenhouse Gas Inventory 2021, IEA (https://www.iea.org/fuels-and-technologies/electricity)

KPMG

© 2021 "KPMG Tax and Advisory" LLC, a company incorporated under the Laws of the Russian Federation and a member firm of the KPMG global organization of independent member firms. All rights reserved. For more detail about the structure of the KPMG global organization please visit home.kpmg/governance

## Decarbonization potential in Russia (available techniques and strategies)

| GHG emissions 2019                           | Mt CO2e/y   | 2120        | According to National Inventory report                                                                      |
|----------------------------------------------|-------------|-------------|-------------------------------------------------------------------------------------------------------------|
| Increase GHG<br>emissions 2035               |             | 201         | Increase due to current trend of economic and industrial development                                        |
| Less carbon intensive<br>power generation    |             | 151         | switch from coal generation to CCGT (natural gas)                                                           |
| Zero-carbon power<br>generation              |             | 53          | zero-carbon generation sources (Nuclear, Hydro, RES)                                                        |
| Public transport<br>electrification          | -           |             | Increase of electric public transport share                                                                 |
| Buildings - energy<br>efficiency improvement | 30          |             | Reduction of specific energy consumption of residential buildings (electricity and heat)                    |
| Distribution losses<br>reduction             | 9           |             | Reduction of losses in grids: electricity – 7,3%, heat – 7,4%                                               |
| Fugitive emissions reduction                 | 10          |             | 22% reduction of fugitive emissions from natural gas transportation                                         |
| Hydrogen                                     | 8           |             | Switch from fossil fuel to hydrogen                                                                         |
| Energy efficiency in<br>ammonia production   | 17          |             | Implementation of BAT and reduction of material consumption                                                 |
| Nitric acid – N2O<br>abatement               | 11          |             | Implementation of BAT and reduction of N2O emissions                                                        |
| Low-carbon metals<br>production              | 4           |             | 15% decommission of sinter, coke and pig iron facilities and switch to steel production from DRI/HBI.       |
| Low-carbon Cement<br>production              | 7           |             | Complete transition to dry method of cement production                                                      |
| Agriculture: animal<br>husbandry             | 9           |             | Use of antibiotics, implementing a complete-mix digester for CH4 emissions utilization                      |
| Agriculture: crop<br>production              | 6           |             | Crop management efficiency improvement including reduction of fertilizers consumption                       |
| MSW treatment<br>measures                    | 26          |             | Increasing recycling and incineration share. Reducing the disposal of MSW at landfills up to 50%.           |
| CCUS                                         | 34          |             | Carbon capture, utilization and storage in oil and gas industry                                             |
| GHG emissions in 2035<br>(potential)         | 1945        |             | After all above activities                                                                                  |
|                                              | 376 Mt CO2e | * NGHGI – T | The National Greenhouse Gas Inventory 2021 (2019 data) Source: KPMG analysis, for more details see Appendix |



#### Economic comparison of decarbonization measures

| Cost of decarbonization, \$/t CO2e         | 69 \$/t CO2e – forecasted carbon price on voluntary carbon market in 2035 11 \$/t CO2e – current carbon price on voluntary carbon mark |                             |                            |       |    |    |    |          |    | bon market in 2021 |         |
|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|-----------------------------|----------------------------|-------|----|----|----|----------|----|--------------------|---------|
|                                            | -960 -7                                                                                                                                | 0 -60 -50 -40               | 10                         | 0 20  | 30 | 40 | 50 | 60       | 70 | 80                 | 90 410  |
| Road transport electrification             | -955                                                                                                                                   | -63                         | 1                          | //    |    |    |    | <b>I</b> |    |                    |         |
| Hydrogen                                   | -457                                                                                                                                   |                             | i<br>I                     |       |    |    |    |          |    |                    |         |
| CCUS                                       | -289 🖉 🖉 📕                                                                                                                             | -38                         |                            |       |    |    |    |          |    |                    |         |
| Ammonia energy efficiency                  | -173 🛛 🗖 📕 -                                                                                                                           | 72                          | i -                        |       |    |    |    |          |    |                    |         |
| Zero-carbon power generation               | -100 🛛                                                                                                                                 | -20                         |                            |       |    |    |    |          |    |                    |         |
| Distribution losses reduction: electricity |                                                                                                                                        | -62                         | į.                         | /     |    | 40 | )  |          |    |                    |         |
| MSW treatment measures                     |                                                                                                                                        | -43 -1                      | 8                          |       |    |    |    |          |    |                    |         |
| Agriculture: crop production               |                                                                                                                                        |                             | -4                         | 2     |    |    |    |          |    |                    |         |
| Agriculture: animal husbandry              |                                                                                                                                        |                             | -4                         | 2     |    |    |    |          |    |                    |         |
| Nitric acid – N2O abatement                |                                                                                                                                        |                             | -2                         | -0,3  |    |    |    |          |    |                    |         |
| Less carbon intensive power generation     |                                                                                                                                        |                             | -4                         | 1     |    |    |    |          |    |                    |         |
| Buildings - energy efficiency              |                                                                                                                                        |                             |                            | 17 19 |    |    |    |          |    |                    |         |
| Coment                                     |                                                                                                                                        |                             | 1                          | 18    |    |    |    |          | 7  | 2                  |         |
| Low-carbon techniques in metallurgy        |                                                                                                                                        |                             | 1                          |       |    |    | 54 |          |    |                    | 92      |
| Fugitive O&G emission reduction            |                                                                                                                                        |                             | <br> <br>                  |       |    |    |    |          |    |                    | 344 405 |
|                                            |                                                                                                                                        |                             |                            |       |    |    |    |          |    |                    |         |
| Total potential                            | Non-market<br>incentives                                                                                                               | Applicable for ca<br>market | Producing financial income |       |    |    |    |          |    |                    |         |
| ~376 Mt CO2e                               | <b>~60</b> Mt CO2e                                                                                                                     | <b>~265</b> Mt (            | ~ <b>51</b> Mt CO2e        |       |    |    |    |          |    |                    |         |

Source: KPMG analysis, for more details see Appendix



#### Decarbonization policies improvement pathways





© 2021 "KPMG Tax and Advisory" LLC, a company incorporated under the Laws of the Russian Federation and a member firm of the KPMG global organization of independent member firms. All rights reserved. For more detail about the structure of the KPMG global organization please visit home.kpmg/governance

#### Conclusions





of total annual GHG emissions in Russia is attributable to heat&power generation of CO2 eq. GHG emission reduction is achievable using available techniques by 2035 (-18% compared to 2019 level)

376 mt

of total decarbonization potential is attributable to energy sector: switch to less carbon intensive power generation techniques (CCGT), energy efficiency improvement, Zerocarbon power generation, Green/blue Hydrogen etc.

**)**%

 $\leq$ 

П

Ŧ

84%

of decarbonization potential may be achieved as economically attractive or financed with Carbon market mechanisms. of total decarbonization potential may be achieved with non-market instruments (subsidies, preferences, taxes, allowances)



000

2.

0



# Thank you for attention!



#### **Vladimir Lukin**

Partner Advisory / Consulting / ORS

+7 (495) 937 44 77, Ext. 11089 +7 (929) 9393059 <u>vlukin@kpmg.ru</u>

